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Abstract. During the last few decades, significant progress has been made in solving large-
scale finite-dimensional and semi-infinite linear programming problems. In contrast, little progress
has been made in solving linear programs in infinite-dimensional spaces despite their importance
as models in manufacturing and communication systems. Inspired by the research on separated
continuous linear programs, we propose a new class of continuous linear programming problems that
has a variety of important applications in communications, manufacturing, and urban traffic control.
This class of continuous linear programs contains the separated continuous linear programs as a
subclass. Using ideas from quadratic programming, we propose an efficient algorithm for solving
large-scale problems in this new class under mild assumptions on the form of the problem data. We
prove algorithmically the absence of a duality gap for this class of problems without any boundedness
assumptions on the solution set. We show this class of problems admits piecewise constant optimal
control when the optimal solution exists. We give conditions for the existence of an optimal solution.
We also report computational results which illustrate that the new algorithm is effective in solving
large-scale realistic problems (with several hundred continuous variables) arising in manufacturing
systems.
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1. Introduction. Bellman [7, 8] introduced the following optimization problem:

(CLP ) minimize

∫ T

0

c(t)′x(t) dt

subject to (s.t.) A(t)x(t) +

∫ t

0

B(s, t)x(s) ds ≤ b(t),
x(t) ≥ 0, t ∈ [0, T ],

where A(t) and B(s, t) are matrices depending on time (their entries are bounded
measurable functions) and b(t) and c(t) are bounded measurable functions. (CLP ) is
an instance of a continuous linear program.

The problem that has attracted the most attention is the separated continuous
linear programming problem (SCLP), a subclass of the continuous linear programming
problem:

(SCLP ) minimize

∫ T

0

c(t)′u(t) dt
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s.t.

∫ t

0

Gu(t) dt+ y(t) = a(t),(1)

Hu(t) ≤ b(t),
y(t), u(t) ≥ 0, t ∈ [0, T ],

where y(t) and a(t) are absolutely continuous functions. Note that the variables u(t)
and y(t) are linked only through (1), in which u(t) appears only under the integration
operator and y(t) does not appear under the integration operator. The problem
(SCLP ) was first introduced by Anderson [4] in order to model job-shop scheduling
problems (see also Avram, Bertsimas, and Ricard [6], Weiss [49]).

In this paper, we examine a larger subclass of continuous linear programs which
can be used to model a variety of problems that arise in communications, manu-
facturing, and urban traffic control (see Luo [32]). The problem we consider is the
following:

(SCSCLP ) minimize

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt

s.t.

∫ t

0

Gu(t) dt+ Ey(t) = a(t),(2)

Hu(t) ≤ b(t),(3)

Fy(t) ≤ h(t),(4)

u(t) ≥ 0, t ∈ [0, T ],

where b(t), c(t), g(t), and h(t) are bounded measurable functions and a(t) is an
absolutely continuous function. The dimensions of b(t), a(t), u(t), y(t), and h(t)
are n1, n2, n3, n4, and n5, respectively. We call (SCSCLP ) the state-constrained
separated continuous linear programs. We call y(t) the state variable and u(t) the
control variable. We call (2) the state equation (or sometimes we use the term system
dynamics) and call (4) the state constraint. We call (3) the control constraint.

Related literature. The computational study of CLP was initiated by Lehman [26]
who attempted to develop a simplex-like algorithm for CLP. Drews [10], Hartberger
[20], and Segers [44] later followed him. Perold [37, 38] developed the first simplex-
like algorithm for CLP (see also Anderson, Nash, and Perold [1] and Anderson and
Philpott [3]. Anstreicher [5] continued Perold’s work in his Ph.D. thesis, even though
both their algorithms were still incomplete. In the meantime, Russian authors such
as Ilyutovich [21, 22] treated the problem using Pontryagin’s maximum principle.
In addition, Ito, Kelley, and Sachs [23] have developed a primal-dual path, following
interior point method for CLP. Anderson and Nash in [2] proposed a convex quadratic
programming procedure for (SCLP ). The series of papers on SCLP by Pullan [41,
42, 43] deals with solution structure, duality theory, and numerical algorithms and
to the best of our knowledge represents the state of the art of this area. Philpott
and Craddock [39] later specialized Pullan’s work to a network version of SCLP and
presented encouraging numerical results.

Objective and contributions. In this paper, we will develop a new algorithm for
solving SCSCLP problems under Assumption 1 below. The new algorithm uses dis-
cretization. Unlike the algorithms mentioned above, it varies the discretization and
control simultaneously. Based on the number of constant pieces allowed in the con-
trol, we develop a quadratic program with polyhedral constraints. The quadratic
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program is generally nonconvex. However, we do not need to solve the quadratic pro-
gram to optimality. We only need to obtain a KKT point. We use the Frank–Wolfe
method (see Martos [33] and Murty [36]) or general matrix-splitting algorithms (see
Lin and Pang [28], Eckstein [11], Bertsekas and Tsitsiklis [9], Luo and Tseng [31]) to
find a KKT point for the quadratic program. By gradually increasing (and occasion-
ally decreasing) the number of pieces allowed in the control, we can improve upon
any nonoptimal KKT solution. We call this the successive quadratic programming
method. By a KKT solution structural result of Luo and Tseng [31], we show that
the iterates of the algorithm move from one polyhedral set to another, with improved
cost. By bounding the size of the quadratic programs we encounter, we bound the
number of all such polyhedral sets. We show that the new algorithm converges in fi-
nite time. The absence of a duality gap and the existence of certain highly structured
optimal solutions for (SCSCLP ) follow as byproducts. Furthermore, we have imple-
mented our algorithm and report computational results which illustrate that the new
algorithm is effective in solving large scale realistic problems (with several hundred
continuous variables) arising in manufacturing systems.

Structure of the paper. The remainder of this paper is structured as follows.
In section 2, we introduce the dual problem for (SCSCLP ) (called (SCSCLP ∗))
and state our assumptions. We also prove weak duality results between (SCSCLP )
and (SCSCLP ∗) and introduce some standard definitions and notations. In section
3, we develop a quadratic program with polyhedral constraints. In section 3.1, we
review some nonlinear programming techniques for calculating a KKT point of a
quadratic program with polyhedral constraints. In section 4, we develop a procedure
for removing redundant intervals in a feasible solution for (SCSCLP ). In section 5,
we introduce a new discrete approximation for (SCSCLP ) which is closely related to
the dual problem. From this discrete approximation, we derive a criterion to detect
whether a feasible solution is optimal for (SCSCLP ). If the criterion is not satisfied,
we derive a descent direction for the feasible solution to (SCSCLP ). In section 6,
we formally state the new algorithm. In section 7, we prove that the new algorithm
converges in finite time. In section 8, we use the new algorithm to prove new duality
results and new optimal solution structural results for (SCSCLP ). In section 9, we
report computational results that illustrate the effectiveness of the new algorithm in
solving large-scale problems. The reader is advised to first read sections 2 and 6 to
obtain a general idea of the problem, the assumptions, and the new algorithm.

2. Definitions and notation. First, we reiterate problem (SCSCLP ) and
state our assumptions. We consider the problem

(SCSCLP ) minimize

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt

s.t.

∫ t

0

Gu(t) dt+ Ey(t) = a(t),

Hu(t) ≤ b(t),
Fy(t) ≤ h(t),

u(t) ≥ 0, t ∈ [0, T ],

and its dual

(SCSCLP ∗) maximize −
∫ T

0

a(t)′ dπ(t)−
∫ T

0

b(t)′η(t) dt−
∫ T

0

h(t)′ dξ(t)
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s.t. c(t)−G′π(t) dt+H ′η(t) ≥ 0,

E′π(t) + F ′ξ(t) =

∫ T

t

g(t) dt,

π(t) bounded measurable with finite variation,

ξ(t) monotonic increasing and right continuous

on [0, T ] with ξ(T ) = 0, π(T ) = 0,

η(t) ≥ 0, for t ∈ [0, T ],

under the following assumptions (we will give a formal definition of piecewise linear
(constant) functions later in this section).

Assumption 1.

a) a(t) and h(t) are continuous,
b) a(t), c(t), and h(t) are piecewise linear,
c) b(t) and g(t) are piecewise constant,
d) Problem (SCSCLP ) is feasible and its objective value is bounded from below.

We require that u(t), y(t), and η(t) are bounded and measurable functions on
[0, T ]. We remark that the dual problem (SCSCLP ∗) reduces to the alternative
dual problem for (SCLP ) introduced by Pullan [41] when the primal problem is an
SCLP.

We have the following weak duality results for (SCSCLP ). For completeness, we
give its proof.

Proposition 1. Weak duality holds between (SCSCLP ) and (SCSCLP ∗).
Proof. Consider any two solutions (u(t), y(t)) and (π(t), η(t), ξ(t)) which are

feasible to (SCSCLP ) and (SCSCLP ∗), respectively. Let z(t) = b(t) − Hu(t) and
z̄(t) = h(t)− Fy(t). We have

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt−
(
−
∫ T

0

a(t)′ dπ(t)−
∫ T

0

b(t)′η(t) dt−
∫ T

0

h(t)′ dξ(t)

)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt+

∫ T

0

a(t)′ dπ(t) +

∫ T

0

b(t)′η(t) dt+

∫ T

0

h(t)′ dξ(t)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt+

∫ T

0

(∫ t

0

Gu(s) ds+ Ey(t)

)′
dπ(t)

+

∫ T

0

(Hu(t) + z(t))′η(t) dt+

∫ T

0

(Fy(t) + z̄(t))′dξ(t)

=

∫ T

0

(c(t)′u(t) + g(t)′y(t)) dt−
∫ T

0

π(t)′Gu(t) dt+

∫ T

0

(Ey(t))′ dπ(t)

+

∫ T

0

(Hu(t) + z(t))′η(t) dt+

∫ T

0

(Fy(t) + z̄(t))′dξ(t)

=

∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt

+

∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)

+

∫ T

0

z(t)′η(t) dt+

∫ T

0

z̄(t)′dξ(t)
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=

∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt+

∫ T

0

z(t)′η(t) dt+

∫ T

0

z̄(t)′dξ(t)

≥ 0.

Note that in general
∫ T

0
(Fy(t))′dξ(t) and

∫ T
0
z̄(t)′dξ(t) may not exist since neither

y(t) nor z̄(t) needs to be continuous. However, since∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)
= 0,

we have ∫ T

0

y(t)′ dF ′ξ(t) =

∫ T

0

y(t)′ d

(
E′π(t) + F ′ξ(t)−

∫ T

t

g(t) dt

)

−
∫ T

0

y(t)′ d

(
E′π(t)−

∫ T

t

g(t) dt

)

= −
∫ T

0

y(t)′ d

(
E′π(t)−

∫ T

t

g(t) dt

)
,

which implies that
∫ T

0
y(t)′ dF ′ξ(t) exists. The existence of

∫ T
0
z̄(t)′dξ(t) now follows

from the existence of both
∫ T

0
y(t)′ dF ′ξ(t) and

∫ T
0

(Fy(t) + z̄(t))′dξ(t) since∫ T

0

z̄(t)′dξ(t) =

∫ T

0

(Fy(t) + z̄(t))′dξ(t)−
∫ T

0

y(t)′ dF ′ξ(t).

The requirement that π(t) is bounded, measurable, and of finite variation in
(SCSCLP ∗) is important, as it makes the integration by parts valid in the proof of
the above proposition (see also Harrison [19]). As a consequence of the proof, we have
the following corollary.

Corollary 1. Strong duality holds between (SCSCLP ) and (SCSCLP ∗) if and
only if there exist (u(t), y(t)) and (π(t), η(t), ξ(t)) which are feasible to (SCSCLP )
and (SCSCLP ∗), respectively, and satisfy the following conditions:∫ T

0

(c(t)−G′π(t) +H ′η(t))
′
u(t) dt = 0,∫ T

0

(b(t)−Hu(t))′η(t) dt = 0,(5) ∫ T

0

(h(t)− Fy(t))′dξ(t) = 0.

We call all three equations in (5) the complementary slackness condition for (SCSCLP )
and (SCSCLP ∗).

The following are standard definitions and notations which we will use throughout
the remainder of the paper.

We call a sequence of time epochs P = {t0, . . . , tp} a partition of [0, T ] if

0 = t0 ≤ t1 ≤ · · · ≤ tp = T.
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We use |P | to denote the cardinality of P . Note that since our development sometimes
treats ti as a variable, we allow ti = ti−1 for some i ≥ 1 and always treat ti and ti−1

as two different variables.
We say that a function f(t) is piecewise constant (linear) with a partition P =

{t0, . . . , tp} if f(t) is constant (linear) on [ti−1, ti) for i = 1, . . . , p. We say f(t) is
piecewise constant (linear) on [0, T ] if f(t) is piecewise constant (linear) with some
partition of [0, T ].

Let P = {t0, . . . , tp} be a partition of [0, T ]. Throughout this paper, we assume
Assumption 1 holds. In particular, we assume that a(t), h(t), and c(t) are piecewise
linear and b(t) and g(t) are piecewise constant with partition P . Let B be the set of
breakpoints of a(t), b(t), c(t), g(t), and h(t). For each breakpoint in B, we select one
element ti in P such that its value denotes the same time in [0, T ] as the breakpoint.
We always select t0 = 0 and tp = T . We denoteDP to be the set of selected elements of
P excluding t0 and tp. Let DP

1 = DP
⋃ {t0, tp}. We sometimes omit the superscript

P when the context is clear.
We say that an interval [ti−1, ti] is a subinterval of [tl, tm], where tl and tm are

two consecutive breakpoints in DP
1 , if l ≤ i − 1 < i ≤ m. In this case, we also say

that ti−1, ti, and [ti−1, ti] reside on [tl, tm].
For a function f(t), we will use the notation

f(t−) = lim
s→t− f(s) and f(t+) = lim

s→t+ f(s),

when the above limits exist and t is not equal to any breakpoint in DP
1 . If [ti−1, ti] is

a zero-length subinterval of [tl, tm], where tl and tm are two consecutive breakpoints
in DP

1 , we let

f(ti−) =

{
lims→ti− f(s) if ti = tm,
lims→ti+ f(s) if ti = tl,

and let f(ti−1+) = f(t) = f(ti−). We note that the value of f(ti) is sensitive to both
the value of ti and its index i.

Given ti 6= ti−1 for i = 1, . . . , p and a set of 2p numbers f̂(t0+), f̂(t1−), f̂(t1+), . . . ,

f̂(tp−1+), f̂(tp−), the function f(t) defined by

f(t) =


f̂(ti+) if t = t0, t1, . . . , tp−1,
0 if t = T ,
ti−t

ti−ti−1
f̂(ti−1+) + t−ti−1

ti−ti−1
f̂(ti−) for t ∈ (ti−1, ti), i = 1, . . . , p

is called the piecewise-linear extension of these 2p numbers; for a set of p numbers
f̂(t0+), f̂(t1+), . . . , f̂(tp−1+), the function f(t) defined by

f(t) =

{
f̂(tp−1+) t = T ,

f̂(ti−1+) for t ∈ [ti−1, ti), i = 1, . . . , p

is called the piecewise constant extension of these p variables.

For two functions f(t) and g(t), we denote
∫ b
a
f(t) dg(t) as the Lebesgue–Stieltjes

integral of f(t) with respect to g(t) from a to b, given that the integral exists, including
both a and b. For any mathematical program (LP) we let V (LP) be the optimal value
of the objective function, which may not be attained. For any feasible solution x of
(LP), we let V (LP, x) be the solution value of x in (LP). For any n-dimensional
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1 t2 t3 t4 t5 t6t0 t

time 

u(t)

y(t)

Fig. 1. A piecewise constant optimal control for (SCLP ).

vector x, we denote by xi the ith coordinate of x, and, for any nonempty subset
Q ⊆ {1, . . . , n}, we use xQ, [x]Q, or (x)Q to denote the vector with components xi,
i ∈ Q (with xi arranged in the same order as in x). For a matrix A, we denote by Aij
the jth element of the ith row of matrix A and denote by Ai• the ith row of A.

3. A quadratic programming subproblem. By a result of Pullan [42] (see
also Anderson and Nash [2]), there exists an optimal basic feasible solution to (SCLP )
whose u(t) is piecewise constant (see Figure 1) when Assumption 1 holds and the
solution set to (SCLP ) is bounded. We will prove later in the paper that this remains
true for (SCSCLP ). For any feasible control u(t) that is piecewise constant with
respect to a partition P , we have the following standard linear approximation problem
(see Pullan [41] and the references therein):

DP (P ) min

p∑
i=1

(ti − ti−1)û(ti−1+)′c
(
ti + ti−1

2

)

+

p∑
i=1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

s.t. Eŷ(t0) = a(t0),

(ti − ti−1)Gû(ti−1+) + Eŷ(ti)− Eŷ(ti−1) = a(ti)− a(ti−1),

i = 1, . . . , p,

Hû(ti−1+) ≤ b(ti−1+), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

û(ti−1+) ≥ 0, i = 1, . . . , p,
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where we have the convention that c( ti+ti−1

2 ) = c(ti−) whenever ti = ti−1. Note
that even though it is possible that ti = ti−1 for some i ≥ 1, we still treat û(ti+)
and û(ti−1+) as separate variables. If (û, ŷ) is a feasible solution to DP (P ), where
partition P satisfies ti 6= ti−1 for all i, the piecewise constant extension of û, together
with the piecewise-linear extension of ŷ, defines a feasible solution to (SCSCLP )
with the same cost, due to Assumption 1. If we fix the partition, DP (P ) is a linear
programming problem. So, once an optimal partition P is known, an optimal solution
can be computed by solving the linear program DP (P ).

However, we do not know the optimal partition in advance. The algorithms pro-
posed by Pullan [41] and by Philpott and Craddock [39] alternatively do the following
two steps:

1) Improve the control for the current partition.
2) Improve the partition.

In contrast, the algorithm we propose improves both the control and partition at the
same time.

By introducing new variables

v̂(ti) = (ti − ti−1)û(ti−1+),(6)

we can eliminate variable û from DP (P ) and obtain the following simpler mathemat-
ical programming problem in variables v̂, ŷ, and t̂, with t̂ being the vector of ti’s such
that ti 6∈ DP

1 :

QP (|P |) min

p∑
i=1

v̂(ti)
′c
(
ti + ti−1

2

)
+

p∑
i=1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

s.t. Eŷ(t0) = a(t0),

Gv̂(ti) + Eŷ(ti)− Eŷ(ti−1) = a(ti)− a(ti−1),(7)

i = 1, . . . , p,

Hv̂(ti) ≤ (ti − ti−1)b(ti−1+), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

0 = t0 ≤ t1 ≤ · · · ≤ tp = T,

v̂(ti) ≥ 0, i = 1, . . . , p,

where c( ti+ti−1

2 ) = c(ti−) whenever ti = ti−1. Note that the breakpoints in DP
1 are

fixed and are not variables. We treat both v̂(ti) and ŷ(ti) as variables. Let tl and tm
be two consecutive breakpoints in DP

1 . For any i ∈ (l, m], c( ti+ti−1

2 ), a(ti)− a(ti−1),
and h(ti) are the following linear functions of ti and ti−1 (note that by Assumption 1b,
c(t), a(t), and h(t) are piecewise linear and therefore ċ(t), ȧ(t), and ḣ(t) are piecewise
constant):

c

(
ti + ti−1

2

)
= c(tl) +

ti + ti−1 − 2tl
2

ċ(tl+),

a(ti)− a(ti−1) = (ti − ti−1)ȧ(tl+),

h(ti) = h(tl) + (ti − tl)ḣ(tl+),

and g(ti−1+) = g(tl) and b(ti−1+) = b(tl) are constant vectors. So, QP (|P |) is a
quadratic programming problem with polyhedral constraints.

Given a feasible solution (v̂, ŷ, t̂) to QP (|P |) such that ti 6= ti−1 for all i, we can
obtain a feasible solution (û, ŷ) to problem DP (P ) with P defined from vector t̂ and
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the breakpoints in DP
1 and û defined from

û(ti−1+) =
v̂(ti)

ti − ti−1
.(8)

Equation (6) defines an injective mapping from the solution set to DP (P ) to the
solution set to QP (|P |). The two related solutions have the same solution value.

However, if ti = ti−1 but v̂(ti) 6= 0 for some i, the right-hand side of (8) is not
properly defined, i.e., there may be a solution to QP (|P |) for which the corresponding
solution to DP (P ) cannot be constructed. We overcome this difficulty by constantly
removing redundant zero-length intervals in a feasible solution and by using only the
solution (v̂, ŷ, t̂) to QP (|P |) that satisfies

ti 6= ti−1 for all i ≥ 1(9)

to construct a feasible solution for DP (P ) (and so for (SCSCLP )). When some zero-
length intervals cannot be removed, we show that there is a series of feasible solutions
to QP (|P |) that satisfies (9) whose solution value becomes arbitrarily close to that
of the feasible solution to QP (|P |). This is key to understanding the absence of a
duality gap result between (SCSCLP ) and (SCSCLP ∗), as we will see later on.

Lemma 1. Suppose u(t) in all feasible solutions to (SCSCLP ) is bounded. Let
(v̂, ŷ, t̂) be a feasible solution to QP (|P |). Then

v̂(ti) = 0 whenever ti = ti−1.(10)

Proof. Suppose ti = ti−1 for some i, but v̂(ti) 6= 0. Let [tl, tm] be the interval
ti resides on, where tl and tm are two consecutive breakpoints in DP

1 . Without
loss of generality, we may assume that there exists a positive-length subinterval of
[tl, tm] that is adjacent to [ti−1, ti] (since we can switch the values of v̂(tj) and
ŷ(tj) with adjacent zero-length subintervals on [tl, tm] and maintain the feasibility of
the solution). We assume that the adjacent positive-length subinterval on [tl, tm] is
[ti−2, ti−1]. When the adjacent positive-length subinterval of [tl, tm] is [ti, ti+1], a
similar analysis applies.

For any τ ∈ (0, 1), it is easy to verify that the following solution is feasible for
QP (|P |):

t̃τj =

{
tj if j 6= i− 1 and j 6= i,
τti−2 + (1− τ)ti−1 if j = i− 1,
ti if j = i,

ṽτ (tτj ) =

 v̂(tj) if j 6= i− 1 and j 6= i,
(1− τ)v̂(ti−1) if j = i− 1,
τ v̂(ti−1) + v̂(ti) if j = i,

ỹτ (tτj ) =

 ŷ(tj) if j 6= i− 1 and j 6= i,
τ ŷ(ti−2) + (1− τ)ŷ(ti−1) if j = i− 1,
ŷ(ti) if j = i.

The basic idea is to split interval [ti−2, ti−1] into two intervals [ti−2, τ ti−2+(1−τ)ti−1]
and [τti−2 + (1 − τ)ti−1, ti−1] and combine the second interval with [ti−1, ti]. It is
easy to check that (ṽτ , ỹτ , t̃τ ) is feasible for QP (|P |) and has one less zero-length
interval than (v̂, ŷ, t̂). Applying the same process repeatedly, we can eliminate all
the zero-length intervals in the solution (v̂, ŷ, t̂).
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Let (v̄τ , ȳτ , t̄τ ) be the resulting solution and let Q be the resulting partition.
Hence, (v̄τ , ȳτ , t̄τ ) is feasible for QP (|Q|). From this solution, we can construct a
feasible solution for DP (Q) (and thus for (SCSCLP )) by using (8). However, as τ
tends to zero, the corresponding feasible solution to DP (P ) is unbounded from above
(since the denominator in (8) goes to zero, but the numerator is bounded away from
zero). Thus u(t) in (SCSCLP ) is unbounded and this creates a contradiction.

We remark that Lemma 1 implies that if u(t) is bounded and E is an identity
matrix (e.g., a bounded and feasible (SCLP )), then ŷ(ti−1) = ŷ(ti) whenever ti−1 =
ti. In general, when (10) holds, it is possible that ŷ(ti−1) 6= ŷ(ti) even if ti−1 = ti. If in
addition to (10), ŷ(ti−1) = ŷ(ti) for some i such that ti−1 = ti, then we can eliminate
the zero-length interval [ti−1, ti] from (v̂, ŷ, t̂) while maintaining the feasibility and
improving the solution value of the solution. This fact will be used later in section 4
to remove redundant intervals.

In general, u(t) may not be bounded in a feasible solution to (SCSCLP ). It is pos-
sible that there is no feasible solution to (SCSCLP ) that is optimal for (SCSCLP ).
This perhaps is the key difficulty in establishing the absence of a duality gap between
(SCSCLP ) and (SCSCLP ∗) by conventional methods. Hence, we have the following
relationship between (SCSCLP ) and QP (|P |).

Lemma 2. Given any feasible solution (v̂, ŷ, t̂) to QP (|P |), there exists a series
of feasible solutions (v̂k, ŷk, t̂k) to QP (|P |) that satisfies (9) and whose solution value
becomes arbitrarily close to that of (v̂, ŷ, t̂) as k tends to infinity.

Proof. By using the same procedure used to prove Lemma 1, we can construct a
solution (v̄τ , ȳτ , t̄τ ) which is feasible to QP (|Q|) for some partition Q and satisfies
(9). It is easily verified that the solution value of (v̄τ , ȳτ , t̄τ ) to QP (|Q|) becomes
arbitrarily close to that of (v̂, ŷ, t̂) as τ goes to zero.

In fact, we can have ti 6= ti+1 and ti−1 6= ti−2 whenever ti = ti−1 in a local
optimum for QP (|P |). The existence of v̂(ti) 6= 0 but ti = ti−1 indicates the presence
of the Dirac δ function in u(t) at time ti.

A direct consequence of Lemma 2 is V ((SCSCLP )) ≤ V (QP (|P |)) for all P .
This fact enables us to solve (SCSCLP ) through solving QP (|P |) for a series of
partitions. We note that V (QP (|P |)) = V (SCSCLP ) does not imply that there is a
feasible solution for (SCSCLP ), whose solution value is equal to V (QP |P |), due to
the possible presence of zero-length intervals in P .

3.1. Finding a KKT point for QP (|P |). We do not need to solve the non-
convex quadratic program QP (|P |) to optimality, as we will see in section 6. We
only need to compute a series of KKT points (or equivalently, stationary points) of
a set of quadratic programs. We use the Frank–Wolfe method (see Martos [33] and
Murty [36]) or general matrix-splitting algorithms (see Lin and Pang [28], Eckstein
[11], Bertsekas and Tsitsiklis [9], Luo and Tseng [31]) to find a KKT point for the
quadratic program. There are other methods for obtaining a KKT point, such as
those proposed by Ye [51] and Kojima, Noma, and Yoshise [24].

4. Removing redundant intervals. After finding a KKT point of QP (|P |),
it is possible that some zero-length intervals can be removed, as we noted following
Lemma 1. It is also possible that some adjacent intervals can be merged while im-
proving the solution value. The reduction of unnecessary control pieces in the solution
is a key feature of the new algorithm. This enables us to prove the convergence of
the new algorithm without requiring the norm of the maximal length interval in the
discretization to tend to zero (cf. Pullan [41] and Philpott and Craddock [39]).
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To do this, let (v̂, ŷ, t̂) be a feasible solution to QP (|P |) and let [ti−1, ti] and
[ti, ti+1] be two adjacent intervals that reside on [tl, tm], where tl and tm are two
consecutive breakpoints in DP

1 . We eliminate ti from P (or equivalently, combine
[ti−1, ti] and [ti, ti+1]) and define a new feasible solution (ṽ, ỹ, t̃) for QP (|P \ {ti}|)
as follows. Let ṽ be the vector formed by removing v̂(ti+1) from v̂ and then replacing
v̂(ti) with v̂(ti) + v̂(ti+1), let ỹ be the vector formed by removing ŷ(ti) from ŷ, and
let t̃ be the vector formed by removing ti from t̂.

Lemma 3. Let [ti−1, ti] and [ti, ti+1] be two adjacent intervals that reside on
[tl, tm], where tl and tm are two consecutive breakpoints in DP

1 . If

(ti+1 − ti)v̂(ti)
′ċ(ti−1+) + (ti+1 − ti)ŷ(ti−1)′g(ti−1+) + (ti − ti−1)ŷ(ti+1)′g(ti−1+)

≤ (ti − ti−1)v̂(ti+1)′ċ(ti−1+) + (ti+1 − ti−1)ŷ(ti)
′g(ti−1+),(11)

then we can combine [ti−1, ti] and [ti, ti+1] while maintaining the feasibility and
improving the solution value of a feasible solution to QP (|P |).

Proof. The difference between the solution value of (v̂, ŷ, t̂) and that of the
solution (ṽ, ỹ, t̃) is the following:

v̂(ti)
′c
(
ti + ti−1

2

)
+ v̂(ti+1)′c

(
ti+1 + ti

2

)
+
ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

+
ti+1 − ti

2
(ŷ(ti+1) + ŷ(ti))

′g(ti−1+)− (v̂(ti) + v̂(ti+1))′c
(
ti+1 + ti−1

2

)
− ti+1 − ti−1

2
(ŷ(ti+1) + ŷ(ti−1))′g(ti−1+)

= − 1

2
((ti+1 − ti) v̂(ti)

′ċ(ti−1+) + (ti+1 − ti)ŷ(ti−1)′g(ti−1+)

+ (ti − ti−1)ŷ(ti+1)′g(ti−1+))

+
1

2
((ti − ti−1)v̂(ti+1)′ċ(ti−1+) + (ti+1 − ti−1)ŷ(ti)

′g(ti−1+)) .

We see that the new solution has a smaller solution value if and only if (11)
holds.

A direct corollary to Lemma 3 is the following.

Corollary 2. Let tl and tm be two consecutive breakpoints in DP
1 . We can

combine adjacent zero-length intervals in [tl, tm] while maintaining the feasibility and
improving the solution value of a feasible solution to QP (|P |).

Proof. Let [ti−1, ti] and [ti, ti+1] be two adjacent zero-length intervals that reside
on [tl, tm]. Since ti−1 = ti = ti+1, (11) is trivially satisfied. By Lemma 3, we can
combine [ti−1, ti] and [ti, ti+1] and maintain the feasibility and improve the solution
value of the feasible solution to QP (|P |).

By Corollary 2, we can combine adjacent zero-length intervals. The following
lemma implies that all the zero-length intervals except those at the breakpoints in
DP

1 can be eliminated.

Lemma 4. Let [ti−1, ti] be a zero-length interval that resides on [tl, tm], where
tl and tm are two consecutive breakpoints in DP

1 . Suppose [ti−2, ti−1] and [ti, ti+1]
are two positive-length intervals that also reside on [tl, tm]. We can either

(a) combine [ti−2, ti−1] and [ti−1, ti], or
(b) combine [ti−1, ti] and [ti, ti+1],
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while maintaining the feasibility and improving the solution value of the feasible solu-
tion to QP (|P |).

Proof. Since ti−1 = ti, by Lemma 3, we can combine [ti−2, ti−1] and [ti−1, ti] if
the following relation holds:

(ti−1 − ti−2)ŷ(ti)
′g(ti−2+) ≤ (ti−1 − ti−2)(v̂(ti)

′ċ(ti−2+) + ŷ(ti−1)′g(ti−2+)).(12)

By Lemma 3 again, we can combine [ti−1, ti] and [ti, ti+1] if the following relation
holds:

(ti+1 − ti)ŷ(ti)
′g(ti+) ≥ (ti+1 − ti)(v̂(ti)

′ċ(ti+) + ŷ(ti−1)′g(ti+)).(13)

By assumption, we have ti+1− ti > 0 and ti−1− ti−2 > 0. Since c(t) is linear and g(t)
is constant on [tl, tm], we have

g(ti−2+) = g(ti+) and ċ(ti−2+) = ċ(ti+).

So either (12) or (13) is true. This proves the lemma.
We next propose the following procedure for removing redundant intervals on

[tl, tm], where tl and tm are two consecutive breakpoints in DP
1 .

Procedure PURIFY. Repeatedly combine two adjacent intervals [ti−1, ti] and
[ti, ti+1] in [tl, tm] if (11) is satisfied.

When more than one pair of adjacent intervals satisfies (11), we can combine them
in an arbitrary order, one pair at a time. Let P̃ be the resulting partition of [0, T ]
after we apply the above procedure to P for all consecutive breakpoints in DP

1 . We
call P̃ a purified partition of [0, T ]. Note that the remaining zero-length intervals are
located at the breakpoints in DP

1 and there are at most 2|DP
1 | zero-length intervals

in P .

5. Improving a nonoptimal solution. One major step of the new algorithm
is to calculate a KKT point of the system QP (|P |) for some partition P of [0, T ].
However, the problem QP (|P |) is nonconvex. To obtain a global optimal solution for
(SCSCLP ), we must be able to improve a solution that is not globally optimal for
(SCSCLP ). In this section, we give descent directions for solutions that are not glob-
ally optimal for (SCSCLP ). To do so, we first introduce a new discrete approximation
for (SCSCLP ) which is closely related to the dual problem (SCSCLP ∗). From this
new approximation, we derive a criterion that detects whether a solution is globally
optimal for (SCSCLP ). If this criterion is not satisfied, we give a descent direction
for the current solution and thus improve the solution value. We show that instead
of using the direction constructed in section 5.3, an algorithm for (SCSCLP ) can
also use the Frank–Wolfe method or the matrix-splitting algorithm to find a descent
direction. We also show that the first iterate of the Frank–Wolfe method provides an
upper bound on the current duality gap.

5.1. A new discrete approximation. For partition P = {t0, . . . , tp}, we let

P ′ =
{
t0,

t0+t1
2 , t1, . . . ,

tp−1+tp
2 , tp

}
be a refined partition of P . Consider the following

new discrete approximation to (SCSCLP ), a close variation of the second discretiza-
tion in Pullan [41]:

AP1(P ) min

p∑
i=1

ti − ti−1

2

(
c(ti−1+)′û(ti−1+) + c(ti−)′û(ti−)
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+2ŷ

(
ti−1 + ti

2

)′
g(ti−1+)

)
s.t. Eŷ(t0) = a(t0),

(
ti − ti−1

2

)
Gû(ti−) + Eŷ(ti)− Eŷ

(
ti + ti−1

2

)
= a(ti)− a

(
ti + ti−1

2

)
,

i = 1, . . . , p,(
ti − ti−1

2

)
Gû(ti−1+) + Eŷ

(
ti + ti−1

2

)
− Eŷ(ti−1)

= a

(
ti + ti−1

2

)
− a(ti−1),

i = 1, . . . , p,

Hû(ti−1+) ≤ b(ti−1+), i = 1, . . . , p,

Hû(ti−) ≤ b(ti−), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

F ŷ

(
ti + ti−1

2

)
≤ h

(
ti + ti−1

2

)
, i = 1, . . . , p,

û(ti−), û(ti−1+) ≥ 0, i = 1, . . . , p.

Problem AP1(P ) is closely related to the dual problem. The linear programming dual
of AP1(P ) gives rise to feasible solutions for the dual problem (SCSCLP ∗). Thus
an optimal solution to AP1(P ) contains the dual information. We will construct
a descent solution for (SCSCLP ) based on a solution for AP (P ), a closely related
linear program, to be defined shortly.

It is clear that the set of feasible solutions to AP1(P ) is the same as the set
of feasible solutions to DP (P ′) if we identify û(ti−) in AP1(P ) with û(( ti−1+ti

2 )+)
in DP (P ′). There are two differences between DP (P ′) and AP1(P ), both of which
reside in the objective function. First, instead of averaging the cost coefficients of u(t)
over each subinterval, the instantaneous values of the cost coefficients at the original
breakpoints of P are used. Second, instead of using the average values of the state
variable y(t) in each subinterval, the values of y(t) at the midpoint of each subinterval
of P are used. It can be checked that any feasible solution for DP (P ) defines a
feasible solution for DP (P ′) and thus for AP1(P ), and these two solutions have the
same solution value.

Similar to QP (|P |), we introduce v̂ to eliminate û, where

v̂(ti−1+) =
ti − ti−1

2
û(ti−1+) and v̂(ti−) =

ti − ti−1

2
û(ti−).(14)

Now AP1(P ) is transformed into the following linear program in v̂ and ŷ:

AP (P ) min

p∑
i=1

(
c(ti−1+)′v̂(ti−1+) + c(ti−)′v̂(ti−)
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+(ti − ti−1)ŷ

(
ti−1 + ti

2

)′
g(ti−1+)

)
s.t. Eŷ(t0) = a(t0),

Gv̂(ti−) + Eŷ(ti)− Eŷ
(
ti + ti−1

2

)
= a(ti)− a

(
ti + ti−1

2

)
,

i = 1, . . . , p,

Gv̂(ti−1+) + Eŷ

(
ti + ti−1

2

)
− Eŷ(ti−1) = a

(
ti + ti−1

2

)
− a(ti−1),

i = 1, . . . , p,

Hv̂(ti−1+) ≤
(
ti − ti−1

2

)
b(ti−1+), i = 1, . . . , p,

Hv̂(ti−) ≤
(
ti − ti−1

2

)
b(ti−), i = 1, . . . , p,

F ŷ(ti) ≤ h(ti), i = 0, . . . , p,

F ŷ

(
ti + ti−1

2

)
≤ h

(
ti + ti−1

2

)
, i = 1, . . . , p,

v̂(ti−), v̂(ti−1+) ≥ 0, i = 1, . . . , p.

Similar to AP1(P ) and DP (P ′), AP (P ) and QP (|P ′|) have the same feasible solution
set if the partition in QP (|P ′|) is fixed to P ′. We note that the actual value of
ŷ(t0) does not affect the objective value of AP (P ) as long as Eŷ(t0) = a(t0) and
F ŷ(t0) ≤ h(t0) (which is indeed feasible by assumption). The dual problem for
AP (P ) (after eliminating ŷ(t0)) can be written as

AP ∗(P ) max π̂(t0+)′a(t0)

+

p∑
i=1

(π̂(ti−1+) + π̂(ti−))′
(
a(ti)− a

(
ti + ti−1

2

))

−
p∑
i=1

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−)

+

p∑
i=1

(
ξ̂(ti)

′h(ti) + ξ̂

(
ti−1 + ti

2

)′
h

(
ti−1 + ti

2

))
s.t. c(ti−)−G′π̂(ti−) +H ′η̂(ti−) ≥ 0, i = 1, . . . , p,

c(ti−1+)−G′π̂(ti−1+) +H ′η̂(ti−1+) ≥ 0, i = 1, . . . , p,

E′(−π̂(ti−) + π̂(ti−1+)) + F ′ξ̂
(
ti−1 + ti

2

)
= (ti − ti−1)g(ti−1+),

i = 1, . . . , p,

E′(−π̂(ti+) + π̂(ti−)) + F ′ξ̂(ti) = 0, i = 1, . . . , p− 1,

E′(π̂(tp−)) + F ′ξ̂(tp) = 0,

η̂(ti−), η̂(ti−1+) ≥ 0, i = 1, . . . , p,

ξ̂(ti), ξ̂

(
ti−1 + ti

2

)
≤ 0, i = 1, . . . , p.

Similar to the second discretization in Pullan [41], the importance of AP (P ) lies
in the fact that feasible solutions for its dual problem AP ∗(P ) can be used either to
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define a feasible solution for (SCSCLP ∗) with the same solution value or to define a
sequence of feasible solutions for (SCSCLP ∗) whose solution value converges to that
of the original solution to AP ∗(P ), as shown in the following theorem.

Theorem 1. Suppose that P is a purified partition of [0, T ] (as defined at the

end of section 4). Given any feasible solution (π̂, η̂, ξ̂) to AP ∗(P ), if (9) holds for P ,
then there exists a feasible solution (π(t), η(t), ξ(t)) to (SCSCLP ∗) whose solution

value equals that of (π̂, η̂, ξ̂). Otherwise, there exists a series of feasible solutions
(πk(t), ηk(t), ξk(t)) to (SCSCLP ∗) that are piecewise linear with partition P k, whose

solution value converges to that of (π̂, η̂, ξ̂) with P k satisfying (9).
Proof. When there are no zero-length intervals in P (i.e., (9) holds), we let

ξ(t) =

{∑p
j=i+1

(
ξ̂
(
tj+tj−1

2

)
+ ξ̂(tj)

)
if t = ti, i = 0, 1, . . . , p− 1,

0 if t = T .

For t ∈ (ti−1, ti), we let

ξ(t) =
ti − t

ti − ti−1
ξ(ti−1) +

t− ti−1

ti − ti−1

(
ξ(ti) + ξ̂(ti)

)
.

We note that ξ(t) is monotonically increasing and right continuous (albeit discontinu-
ous). Let π(t) and η(t) be the piecewise-linear extensions of π̂ and η̂, respectively. It
can be shown that (π(t), η(t), ξ(t)) is a feasible solution for (SCSCLP ∗) by virtue
of the piecewise linearity of the problem data. Now, let us check the relationship
between the solution value of the newly constructed solution of (SCSCLP ∗) and the
original solution of AP ∗(P ). Through integration by parts, we have

−
∫ T

0

a(t)′ dπ(t)

= −a(t)′π(t) |T0 +

∫ T

0

π(t)′ da(t)

= π̂(t0+)′a(t0) +

p∑
i=1

(
a(ti)− a(ti−1)

ti − ti−1

)′ ∫ ti

ti−1

π(t) dt

= π̂(t0+)′a(t0) +

p∑
i=1

(π̂(ti−1+) + π̂(ti−))′
(
a(ti)− a

(
ti + ti−1

2

))
.(15)

Since η(t) is piecewise linear and b(t) is piecewise constant with partition P , we
have ∫ ti

ti−1

b(t)′η(t) dt =

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−), i = 1, . . . , p.

So

−
∫ T

0

b(t)′η(t) dt = −
p∑
i=1

(
ti − ti−1

2

)
(η̂(ti−1+) + η̂(ti−))′b(ti−).(16)

Direct calculation gives

−
∫ T

0

h(t)′ dξ(t)
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= −h(t)′ξ(t)|T0 +

∫ T

0

ξ(t)′ dh(t)

= h(t0)′ξ(t0) +

p∑
i=1

(
h(ti)− h(ti−1)

ti − ti−1

)′ ∫ ti

ti−1

ξ(t) dt

= h(t0)′
p∑
j=1

(
ξ̂

(
tj + tj−1

2

)
+ ξ̂(tj)

)

+

p∑
i=1

(
h(ti)− h(ti−1)

2

)′

×
2

p∑
j=i+1

(
ξ̂

(
tj + tj−1

2

)
+ ξ̂(tj)

)
+ ξ̂

(
ti + ti−1

2

)
+ 2ξ̂(ti)


=

p∑
i=1

(
ξ̂(ti)

′h(ti) + ξ̂

(
ti−1 + ti

2

)′
h

(
ti−1 + ti

2

))
.(17)

Combining (15), (16), and (17), we see that (π(t), η(t), ξ(t)) has the same solution

value as (π̂, η̂, ξ̂). This proves the first part of the theorem.
Now, suppose (9) does not hold for P . Since P is a purified partition, by Corollary

2 and Lemma 4, the zero-length intervals in P can be located only at the breakpoints
in DP

1 . So for any zero-length interval [ti−1, ti] that resides on [tl, tm], where tl and
tm are two consecutive breakpoints in DP

1 , either ti−1 = tl or ti = tm. Let τ ∈ (0, 1).
We define a new solution (π̃τ , η̃τ , ξ̃τ ) in the following way.

If ti−1 = tl, we let

t̃τi−1 = ti−1,

t̃τi = (1− τ)ti + τti+1,

t̃τi+1 = ti+1,

π̃τ (t̃τi−) = (1− τ)π̂(ti−) + τ π̂(ti+),

π̃τ (t̃τi +) = (1− τ)π̂(ti+) + τ π̂(ti+1−),

η̃τ (t̃τi−) = (1− τ)η̂(ti−) + τ η̂(ti+),

η̃τ (t̃τi +) = (1− τ)η̂(ti+) + τ η̂(ti+1−),

ξ̃τ

(
t̃τi + t̃τi−1

2

)
= (1− τ)ξ̂

(
ti + ti−1

2

)
+ τ ξ̂(ti),

ξ̃τ (t̃τi ) = (1− τ)ξ̂(ti) + τ ξ̂

(
ti + ti+1

2

)
,

ξ̃τ

(
t̃τi + t̃τi+1

2

)
= (1− τ)ξ̂

(
ti + ti+1

2

)
.

If ti = tm, we let

t̃τi−2 = ti−2,

t̃τi−1 = (1− τ)ti−1 + τti−2,

t̃τi = ti,

π̃τ (t̃τi−1−) = (1− τ)π̂(ti−1−) + τ π̂(ti−2+),
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π̃τ (t̃τi−1+) = (1− τ)π̂(ti−1+) + τ π̂(ti−1−),

η̃τ (t̃τi−1−) = (1− τ)η̂(ti−1−) + τ η̂(ti−2+),

η̃τ (t̃τi−1+) = (1− τ)η̂(ti−1+) + τ η̂(ti−1−),

ξ̃τ

(
t̃τi + t̃τi−1

2

)
= (1− τ)ξ̂

(
ti + ti−1

2

)
+ τ ξ̂(ti−1),

ξ̃τ (t̃τi−1) = (1− τ)ξ̂(ti−1) + τ ξ̂

(
ti−1 + ti−2

2

)
,

ξ̃τ

(
t̃τi−1 + t̃τi−2

2

)
= (1− τ)ξ̂

(
ti−1 + ti−2

2

)
.

For all the other quantities not defined in the above cases, we let t̃τj = tj ,

π̃τ (t̃τj−) = π̂(tj−), π̃τ (t̃τj+) = π̂(tj+), η̃τ (t̃τj−) = η̂(tj−), η̃τ (t̃τj+) = η̂(tj+), ξ̃τ (t̃τj−1) =

ξ̂(tj−1), and ξ̃τ
(
t̃τj+t̃τj−1

2

)
= ξ̂

(
tj+tj−1

2

)
.

Let P τ be the partition defined from t̃τ . It is easy to check the feasibility of
(π̃τ , η̃τ , ξ̃τ ) to AP ∗(P τ ). Since (π̃τ , η̃τ , ξ̃τ ) converges to (π̂, η̂, ξ̂) and t̃τ converges
to t̂ as τ tends to zero, we see that the solution value of (π̃τ , η̃τ , ξ̃τ ) in AP ∗(P τ )

converges to the solution value of (π̂, η̂, ξ̂) in AP ∗(P ). Furthermore, (9) holds for
P τ . Applying the first part of the theorem to P τ , we conclude that the theorem is
true for P .

We may now summarize the relationship among the values of various discrete
approximations in the following theorem (see also Theorem 3.5 in Pullan [41]).

Theorem 2. For any partitions P and Q,

V (AP (P )) = V (AP ∗(P )) ≤ V ((SCSCLP ∗)) ≤ V ((SCSCLP )) ≤ V (DP (Q)).

Proof. By the strong duality result for finite-dimensional linear programming,
the value of the optimal solution to AP (P ) is the value of the optimal solution to
its dual AP ∗(P ). By Theorem 1, the solution value of this solution can be closely
approximated by a sequence of feasible solutions to (SCSCLP ∗). It then follows
that this value is a lower bound on V ((SCSCLP ∗)), and thus a lower bound on
V ((SCSCLP )) by Proposition 1. The final inequality follows from the definition of
DP (Q).

Corollary 3. For any partitions P and Q, if

V (AP (P )) ≥ V (QP (|Q|)),
then the optimal solution value of QP (|Q|) gives the optimal solution value to
(SCSCLP ). In particular, if a solution (v̂, ŷ, t̂) is feasible for QP (|Q|) and has
the same cost as the optimal value of AP (P ), then (v̂, ŷ, t̂) gives the optimal solu-
tion value for (SCSCLP ) which can be closely approximated by a sequence of feasible
solutions to (SCSCLP ).

Proof. By Lemma 2, the solution value of any feasible solution to QP (|Q|)
is an upper bound on V ((SCSCLP )), and the result follows directly from Theo-
rem 2.

5.2. The doubling of breakpoints. Based on a new discrete approximation
of (SCLP ) similar to AP1(P ), Pullan [41] found a descent solution for (SCLP ) (con-
sequently, a descent direction can be constructed) by patching together the current
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solution and a solution that has a better solution value in AP1(P ) than the current
solution. The new solution has a strictly improved solution value in (SCLP ) but usu-
ally has three times as many constant control pieces as the original solution. In the
following, we give a construction for a feasible solution to (SCSCLP ) that produces,
at most, approximately twice as many breakpoints as the original feasible solution.

Let P be a partition of [0, T ], and define a new partition as follows:

P̄ = {t0, t0, t1, t1, . . . , ti, ti, ti, . . . , tp, tp} ,
where each breakpoint in DP has two duplicates and all the other breakpoints have
only one duplicate. Intuitively, we have placed a zero-length interval at the beginning
of every breakpoint of P and put a zero-length interval at the end of each breakpoint
in DP . Under this configuration, the set of intervals in P̄ is the union of the intervals
in P and a set of zero-length intervals. We let t̄i denote the (i + 1)th element of P̄ .
DP̄

1 is the set of breakpoints in P̄ that correspond to the breakpoints in DP
1 . For

the ith interval (i.e., [ti−1, ti]) in P , we have a corresponding interval [t̄j−1, t̄j ] in
P̄ , where t̄j−1 = ti−1 and t̄j = ti. We call this interval in P̄ an old interval. All the
other intervals in P̄ are called new intervals. Note that all the new intervals have zero
length but not vice versa.

Given a solution (v̂, ŷ, t̂) toQP (|P |), we first construct a feasible solution (v̄, ȳ, t̄)
to QP (|P̄ |) and then show a descent direction for this solution in QP (|P̄ |). The
descent direction will be used in the proof of convergence. We need not use the same
direction in the new algorithm, as we will see in the last remark in section 6. This
solution has the same solution value in QP (|P̄ |) as the current solution in QP (|P |)
and has approximately twice as many intervals, fewer than the one constructed by
Pullan [41].

Let (v̂, ŷ, t̂) be a feasible solution for QP (|P |). For the ith interval in P̄ , if it is
an old interval, we let interval j be the corresponding interval in P and set

v̄(t̄i) = v̂(tj), ȳ(t̄i) = ŷ(tj).(18)

We let v̄(t̄i) = 0 if interval i in P̄ is a new interval and let ȳ(t̄i) = ŷ(tj), where j is the
interval in P that corresponds to the closest old interval in P̄ to the left of [ti−1, ti]
(with the convention that ȳ(t̄1) = y(t0) and ȳ(t̄0) = y(t0)).

It is easy to verify that (v̄, ȳ, t̄) is feasible for QP (|P̄ |) and has the same solution
value in QP (|P̄ |) as (v̂, ŷ, t̂) in QP (|P |).

5.3. A descent direction. According to Corollary 3, a feasible solution (v̂, ŷ, t̂)
to QP (|P |) gives the optimal solution value of (SCSCLP ) if the optimal solution
to AP (P ) has an equal or larger solution value. If so, we can stop the algorithm.

Otherwise, there exists (˜̄v, ˜̄y, ˜̄t) feasible for AP (P ) and with a strictly smaller solution
value in AP (P ), i.e., we have

δ
def
= V (AP (P ), (˜̄v, ˜̄y, ˜̄t))− V (QP (|P |), (v̂, ŷ, t̂)) < 0.(19)

Note that |δ| is an upper bound on the duality gap between (SCSCLP ) and (SCSCLP ∗).
Let ε ∈ [0, 1]. For every interval [ti−1, ti], we define

εi =
(ti − ti−1)ε

2
.

We define a new partition P ε of [0, T ] as follows:

P ε
def
= {t0, t0 + ε1, t1 − ε1, t1 + ε2, . . . , ti − εi, ti, ti + εi+1, . . . , tp − εp, tp} ,
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Fig. 2. The construction of a descent solution where tl and tm are two consecutive breakpoints
in D1.

where we replace the breakpoint ti in P \DP
1 with two elements ti − εi and ti + εi+1

and add two elements ti − εi and ti + εi+1. For breakpoint ti in DP , we add t0 + ε1
and tp − εp for t0 and tp, respectively. We define the vector tε from P ε by mapping
tεi to the (i + 1)th element in P ε. We construct a descent solution (vε, yε, tε) with
partition P ε as follows.

When P does not have any zero-length intervals, let ˜̄u(t), û(t), and ˆ̄u(t) be the
piecewise constant extensions of ˜̄u, û, and ˆ̄u, respectively, where ˜̄u is defined from ˜̄v
by

˜̄u(ti−1+) = 2
˜̄v(ti−1+)

ti − ti−1
, ˜̄u(ti−) = 2

˜̄v(ti−)

ti − ti−1
,

û is defined from v̂ by (8), and ˆ̄u is defined as

ˆ̄u(ti−1+) =
˜̄v(ti−1+) + ˜̄v(ti−)

ti − ti−1
.

We construct the new control by patching together ˜̄u(t), û(t), and ˆ̄u(t) as follows:

uε(t) =


˜̄u(t), t ∈ [ti−1, ti−1 + εi)

⋃
[ti − εi, ti), ti ∈ DP ,

˜̄u(t), t ∈ [tp−1, tp−1 + εp)
⋃

[tp − εp, tp],
û(t), t ∈ [ti−1 + εi, ti − εi),
ˆ̄u(t), otherwise.

(20)

Having constructed the control, the construction of the state variables for (SCSCLP )
is straightforward. Our construction of a descent solution (vε, yε, tε) for (v̂, ŷ, t̂) is
illustrated in Figure 2.

However, if ti−1 = ti for some i, the u variables in the previous paragraph are
not properly defined. Fortunately, we can bypass this difficulty by working on the v
variables. We define vε as follows. Let tl and tm be two consecutive breakpoints in



196 XIAODONG LUO AND DIMITRIS BERTSIMAS

DP
1 . Let [ti + εi+1, ti+1 − εi+1] and [ti+1 − εi+1, ti+1 + εi+2] be two intervals that

reside on [tl, tm]. If tεj is the breakpoint in P ε that is mapped to ti+1 − εi+1, we let

vε(tεj) = (1− ε)v̂(ti+1),

vε(tεj+1) = ε(˜̄v(ti+1−) + ˜̄v(ti+1+)).(21)

If tεj is the breakpoint in P ε that is mapped to tl, we let

vε(tεj+1) = ε˜̄v(tl+).(22)

If tεj is the breakpoint in P ε that is mapped to tm, we let

vε(tεj) = ε˜̄v(tm−).(23)

We define yε in three different cases as follows. For the breakpoint tεj in P ε that
is mapped to ti−1 + εi, we let

yε(tεj) = (1− ε)ŷ(ti−1) + ε˜̄y

(
ti + ti−1

2

)
.(24)

For the breakpoint tεj in P ε that is mapped to ti − εi, we let

yε(tεj) = (1− ε)ŷ(ti) + ε˜̄y

(
ti + ti−1

2

)
.(25)

For the breakpoint tεj in P ε that is mapped to ti, we let

yε(tεj) = (1− ε)ŷ(ti) + ε˜̄y(ti).(26)

When ε is small, (vε, yε, tε) is a descent solution as shown in the following theorem.
Theorem 3. If (19) holds, then (vε, yε, tε) is a feasible solution to QP (|P̄ |) and

V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P̄ |), (v̄, ȳ, t̄)) = εδ + o(ε),(27)

where δ is defined in (19). For ε small enough, (vε, yε, tε) has a strictly smaller
solution value than (v̄, ȳ, t̄).

Proof. The feasibility of (vε, yε, tε) follows easily. By definition, we have

V (QP (|P̄ |), (v̄, ȳ, t̄)) = V (QP (|P |), (v̂, ŷ, t̂))

=

p∑
i=1

v̂(ti)
′c
(
ti + ti−1

2

)
+

p∑
i=1

ti − ti−1

2
(ŷ(ti)

+ ŷ(ti−1))′g(ti−1+),

V (QP (|P̄ |), (vε, yε, tε)) =

|P ε|−1∑
i=1

c

(
tεi + tεi−1

2

)′
vε(tεi)

+

|P ε|−1∑
i=1

tεi − tεi−1

2
(yε(tεi) + yε(tεi−1))′g(tεi−1+).

Let tl and tm be two consecutive breakpoints in DP
1 and let tε

l̄
and tεm̄ be the

corresponding breakpoints in DP ε

1 . We have

m∑
i=l+1

v̂(ti)
′c
(
ti + ti−1

2

)
−

m̄∑
i=l̄+1

c

(
tεi + tεi−1

2

)′
vε(tεi)
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=

m∑
i=l+1

v̂(ti)
′c
(
ti + ti−1

2

)
−

m∑
i=l+1

(1− ε)v̂(ti)
′c
(
ti + ti−1

2

)

−
m−1∑
i=l+1

ε(˜̄v(ti+) + ˜̄v(ti−))′c
(
ti +

εi+1 − εi
2

)
− ε˜̄v(tl+)′c

(
tl +

εi+1

2

)
− ε˜̄v(tm−)′c

(
tm − εm

2

)
=

m∑
i=l+1

ε

(
v̂(ti)

′c
(
ti + ti−1

2

)
− (˜̄v(ti−1+)′c(ti−1+) + ˜̄v(ti−)′c(ti−))

)
+ o(ε),

(28)

and
m∑

i=l+1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)−

m̄∑
i=l̄+1

tεi − tεi−1

2
(yε(tεi) + yε(tεi−1))′g(tεi−1+)

=

m∑
i=l+1

ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

−
m∑

i=l+1

(1− ε) ti − ti−1

2

(
(1− ε)(ŷ(ti) + ŷ(ti−1)) + 2ε˜̄y

(
ti + ti−1

2

))′
g(ti−1+)

−
m∑

i=l+1

εi + εi+1

2

(
2(1− ε)ŷ(ti) + ε

(
˜̄y

(
ti + ti−1

2

)
+ ˜̄y

(
ti+1 + ti

2

)))′
g(ti−1+)

−εl+1

2

(
2(1− ε)ŷ(tl) + ε

(
˜̄y(tl) + ˜̄y

(
tl+1 + tl

2

)))′
g(tl+)

−εm
2

(
2(1− ε)ŷ(tm) + ε

(
˜̄y(tm) + ˜̄y

(
tm−1 + tm

2

)))′
g(tm−)

=

m∑
i=l+1

ε
ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

−
m∑

i=l+1

(ti − ti−1)ε˜̄y

(
ti + ti−1

2

)′
g(ti−1+) + o(ε).

(29)

Summing up (28) and (29) over all pairs of consecutive breakpoints in D1, we
have

V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P̄ |), (v̄, ȳ, t̄))
= V (QP (|P̄ |), (vε, yε, tε))− V (QP (|P |), (v̂, ŷ, t̂))

=

p∑
i=1

ε

(
˜̄v(ti−1+)′c(ti−1+) + ˜̄v(ti−)′c(ti−)− v̂(ti)

′c
(
ti + ti−1

2

))

− ti − ti−1

2
(ŷ(ti) + ŷ(ti−1))′g(ti−1+)

)
+ o(ε)

= ε(V (AP (P ), (˜̄v, ˜̄y, ˜̄t))− V (QP (|P |), (v̂, ŷ, t̂))) + o(ε)

= εδ + o(ε).
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Since δ < 0, when ε is small enough, (vε, yε, tε) is a strictly improved feasible solution
to QP (|P̄ |).

Interestingly, the new solution (vε, yε, tε) gives a descent direction for (v̄, ȳ, t̄)
in QP (|P̄ |). This solution can also be used to show that the first Frank–Wolfe iterate
for (v̄, ȳ, t̄) provides an upper bound on the current duality gap, as we next illustrate.

Let [tl, tm] be two consecutive breakpoints in DP
1 . We define a new partition ¯̄P as

follows. The set of breakpoints of ¯̄P that resides on [tl, tm] is {tl, tl+tl+1

2 , tl+tl+1

2 , . . . , tm},
i.e., the union of {tl, tm} with the set of midpoints of the intervals in P , and each mid-
point appears exactly twice. We construct (¯̄v, ¯̄y, ¯̄t) as follows. The set of breakpoints

of (¯̄v, ¯̄y, ¯̄t) is ¯̄P . Let

¯̄vj =


˜̄v(ti+1−) + ˜̄v(ti+1+) if the jth interval of ¯̄P is [ ti+ti+1

2 , ti+1+ti+2

2 ],

˜̄v(tl+) if the jth interval of ¯̄P is [tl,
tl+tl+1

2 ],

˜̄v(tm−) if the jth interval of ¯̄P is [ tm−1+tm
2 , tm],

0 otherwise,

¯̄y(̄t̄0) = y(t0), and

¯̄y(̄t̄j) =



˜̄y
(
ti+1+ti+2

2

)
if the jth interval of ¯̄P is [ ti+ti+1

2 , ti+1+ti+2

2 ],

˜̄y
(
tl+tl+1

2

)
if the jth interval of ¯̄P is [tl,

tl+tl+1

2 ],

˜̄y(tm) if the jth interval of ¯̄P is [ tm−1+tm
2 , tm],

˜̄y
(
ti+1+ti

2

)
if the j-th interval of ¯̄P is [ ti+ti+1

2 , ti+ti+1

2 ].

Theorem 4. For ε ∈ [0, 1], let tε be defined by P ε. Let (vε, yε, tε) be the
solution to QP (|P̄ |) defined by (21)–(26). We have

vε = ε¯̄v + (1− ε) v̄,
yε = ε¯̄y + (1− ε) ȳ,
tε = ε̄t̄+ (1− ε) t̄,

and (¯̄v, ¯̄y, ¯̄t) is feasible for QP (|P̄ |).
Proof. Theorem 4 obtains the direct consequence of the definition of (vε, yε, tε)

and (¯̄v, ¯̄y, ¯̄t).

If we pick (˜̄v, ˜̄y, ˜̄t) introduced in (19) as an optimal solution for AP (P ), then by
Theorem 2, |δ| is an upper bound on the current duality gap. By (27) and Theorem
4, the negative objective value of the first Frank–Wolfe iterate for (v̄, ȳ, t̄) gives an
upper bound on the current duality gap.

6. A new algorithm for (SCSCLP ). In this section, we give a generic suc-
cessive quadratic programming algorithm for (SCSCLP ).

Algorithm A (E,F,G,H, a(t), b(t), c(t), g(t), h(t), T, β).
Let k = 0. Let d be the current duality gap initially set to infinity.
Let (vk, yk, tk) be a feasible solution to QP (|P 0|). Let P 0 be a partition on [0, T ],
such that a(t), c(t), and h(t) are piecewise linear with P 0 and b(t) and g(t) are
piecewise constant with P 0.
while d > β do

1. Calculate a KKT point of QP (|P k|) which has an equal or better solution
value than (vk, yk, tk).
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2. Recursively remove redundant intervals in P k as follows.

Apply Procedure PURIFY to all pairs of consecutive breakpoints in DPk

1 .
Let (ṽk, ỹk, t̃k) be the resulting solution and let Q be the resulting partition.
If (ṽk, ỹk, t̃k) is not a KKT point of QP (|Q|), let (vk, yk, tk) = (ṽk, ỹk, t̃k)
and P k = Q and go to Step 1. Otherwise, we denote the resulting purified
partition as P̃ k = {t0, t1, . . . , tp}.

3. Double the number of intervals. Define P k+1 as

P k+1 = {t0, t0, t1, t1, . . . , ti, ti, ti, . . . , tp, tp} ,

where each breakpoint in D has two duplicates and all the other breakpoints
have only one duplicate. Construct a feasible solution (v̄k+1, ȳk+1, t̄k+1) for
QP (|P k+1|) as in (18).

4. Calculate the current duality gap d. If the solution value of (ṽk, ỹk, t̃k) is
the same as the optimal value of AP (P̃ k), stop the algorithm. Otherwise go
to Step 5.

5. Get a strictly improved solution (vk+1, yk+1, tk+1) from (v̄k+1, ȳk+1, t̄k+1)
for QP (|P k+1|).

6. Let k = k + 1.
end while

Remarks.
1. In Step 1 of Algorithm A, we can use the Frank–Wolfe method or general

matrix-splitting algorithms to compute a KKT point of QP (|P k|).
2. Algorithm A will not loop between Step 1 and Step 2 forever, because every

time Algorithm A goes from Step 2 to Step 1, the cardinality of P k is reduced
at least by 1.

3. In Step 4 of Algorithm A, we can let d = V (QP (|P̃ k|)) − V (AP (P̃ k)). We
can also let d be the negative objective value of the first Frank–Wolfe it-
erate for (v̄, ȳ, t̄) and so, instead of checking whether the solution value
of (ṽk, ỹk, t̃k) is the same as the optimal value of AP (P̃ k), we can check
whether the objective value of the first Frank–Wolfe iterate for (v̄, ȳ, t̄) is
zero.

4. In Step 5 of Algorithm A, we can use the direction constructed in section
5.3 (cf. (vε, yε, tε)). We can also use the Frank–Wolfe method or general
matrix-splitting algorithms to find a descent direction for (v̄k+1, ȳk+1, t̄k+1).
By Theorem 3, we are guaranteed to find a descent direction.

7. Convergence of the new algorithm. In this section we prove that the new
algorithm converges. We first describe the argument we will use to show the conver-
gence informally. We use the Frank–Wolfe method or general matrix-splitting algo-
rithms to compute a series of KKT points to a series of generally nonconvex quadratic
programs. These KKT points have nondecreasing solution values. By Corollary 3,
we can detect whether a KKT point gives an optimal solution to (SCSCLP ). If it
does, we terminate the algorithm. If not, by Theorem 3, we can find a new solution
with approximately twice as many constant control pieces as the current solution but
with a strictly improved cost. Since there is only a finite number of different solution
values for the KKT points of every quadratic program constructed, and there is an
upper bound on the size of the quadratic programs we encounter (see Corollary 4
below), a finite convergence result follows readily. Based on the primal solution, we
can compute an optimal dual solution for (SCSCLP ∗).
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Contrary to the convergence analysis of a variety of algorithms for (SCLP ), we
do not need to let the norm of the maximal length interval in the discretization tend
to zero (as in Pullan [41]). Moreover, neither do we need the explicit knowledge of
all the extreme points of a certain set of finite-dimensional linear programs (as in
Anderson and Nash [2]). Most importantly, we prove the absence of a duality gap
result as a byproduct of the new algorithm, even when there is no optimal solution
for (SCSCLP ).

In the following, we give upper bounds on the cardinality of P̃ k, the purified
partition in Step 2 of Algorithm A. Since by Lemma 4 and Corollary 2 we know that

the total number of zero-length intervals in P̃ k is at most 2|DP̃k

1 |, we need only to
bound the number of positive-length intervals in P̃ k. We map each positive-length
interval of P̃ k to an extreme point of a certain set of linear programs and then show
that the mapping is injective. Before doing so, we give some more notation and several
useful lemmas.

Let tl and tm be two consecutive breakpoints in DP̃k

1 . By definition, a(t), c(t), and
h(t) are linear and b(t) and g(t) are constant on [tl, tm). Let [t̃i−1, t̃i] and [t̃i, t̃i+1] be
two adjacent positive-length intervals in partition P̃ k such that [t̃i−1, t̃i+1] ⊆ [tl, tm].
Let ∆ti = t̃i − t̃i−1 and ∆ti+1 = t̃i+1 − t̃i. We have ∆ti > 0 and ∆ti+1 > 0 by
assumption. Let (ṽk, ỹk, t̃k) be the resulting solution in Step 2 of Algorithm A. Let
Ji be the set of indices of the constraints in F ỹk(t̃i) ≤ h(t̃i) that are binding. Let

ũk(t̃i−1+) =
ṽk(t̃i)

∆ti

and

ũk(t̃i+) =
ṽk(t̃i+1)

∆ti+1
.

It is obvious that (ũk(t̃i+), ỹk(t̃i+1)−ỹk(t̃i)
∆ti+1

) is a feasible solution to the following linear
system:

(SY SJi) Gũ
k(t̃i+) + E

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
= ȧ(t̃i),

Hũk(t̃i+) ≤ b(t̃i),(
F
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1

)
Ji

≤ ḣ(t̃i),

ũk(t̃i+) ≥ 0.

By introducing new variables, we can eliminate ỹk(t̃i+1)−ỹk(t̃i)
∆ti+1

in (SY SJi) and trans-

form (SY SJi) into the following linear system:

(SY S1Ji) Gũ
k(t̃i+) + E(wi+1 − wi) = ȧ(t̃i),

Hũk(t̃i+) + z̃k(t̃i+) = b(t̃i),

(F (wi+1 − wi))Ji + x = ḣ(t̃i),

x ≥ 0, wi+1 ≥ 0, wi ≥ 0, ũk(t̃i+) ≥ 0, z̃k(t̃i+) ≥ 0.

Every extreme point of the linear program defined by maximizing some linear function
over (SY S1Ji) defines a unique feasible solution to (SY SJi), which is called a gener-
alized extreme point for (SY SJi). Every extreme ray of this linear program defines a
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unique ray to (SY SJi), which is called a generalized extreme ray for (SY SJi). Since
this is a feasible finite-dimensional linear program in standard form, the resolution
theorem applies. After translating the result into variables in (SY SJi), we have the
following analogue of the resolution theorem for (SY SJi).

Lemma 5. Every feasible solution of (SY SJi) can be written as the sum of a con-
vex combination of the generalized extreme points of (SY SJi) and a linear combination
(with nonnegative coefficients) of generalized extreme rays to (SY SJi).

By Lemma 5, we have

ũk(t̃i+) =
k(i)∑
j=1

λ
(i)
j s

(i)
j +

q(i)∑
j=1

µ
(i)
j r

(i)
j ,

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
=

k(i)∑
j=1

λ
(i)
j s̄

(i)
j +

q(i)∑
j=1

µ
(i)
j r̄

(i)
j(30)

for some positive k(i) ≥ 1 and nonnegative q(i) ≥ 0, where λ
(i)
j > 0,

∑k(i)

j=1 λ
(i)
j = 1,

and µ
(i)
j > 0, the (s

(i)
j , s̄

(i)
j ) are generalized extreme points to system (SY SJi), and

the (r
(i)
j , r̄

(i)
j ) are generalized extreme rays to system (SY SJi). Without loss of

generality, assume that we have sorted (s
(i)
j , s̄

(i)
j ) in the following order:

ċ(t̃i)
′s(i)
j − g(tl+)′s̄(i)

j ≥ ċ(t̃i)′s(i)
j+1 − g(tl+)′s̄(i)

j+1 for all j.(31)

We have the following result on (ṽk, ỹk, t̃k).
Lemma 6.

V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) ≤ V (QP (|P k|), (vk, yk, tk)).

Proof. Since Procedure PURIFY does not increase the solution value of the current
solution, the result immediately follows.

Lemma 7. Suppose (30) and (31) hold for ũk(t̃i−1+) and ũk(t̃i+). Furthermore,
suppose [t̃i−1, t̃i] is not the first positive-length interval that resides on [tl, tm]. Then
we have

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 > ċ(t̃i)

′s(i)
1 − g(tl+)′s̄(i)

1

for the two adjacent positive-length intervals [t̃i−1, t̃i] and [t̃i, t̃i+1] that reside on
[tl, tm].

Proof. We first show that

ċ(t̃i)
′r(i)
j − g(tl+)′r̄(i)

j ≤ 0(32)

for every j ≤ q(i) without assuming that [t̃i−1, t̃i] is not the first positive-length
interval that resides on [tl, tm].

Let τ ∈ (0, 1). Suppose

ũk(t̃i+) = τu1 + (1− τ)u2

and

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
= τy1 + (1− τ)y2,
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Fig. 3. Perturbation of the solution.

where (u1, y1) and (u2, y2) are two feasible solutions for (SY SJi). Let γ be the largest
scalar in (0, τ∆ti+1] such that F (ỹk(t̃i) + γy1) ≤ h(t̃i). Such a γ exists by virtue of
the feasibility of (u1, y1) and (u2, y2) to system (SY SJi). For any ∆t ∈ (0, γ), we
consider the following perturbation of (ṽk, ỹk, t̃k), as shown in Figure 3:

t̃∗j =

{
t̃i + ∆t if j = i,
t̃j otherwise,

ṽ∗(t̃∗j ) =

 ṽk(t̃i) + u1∆t if j = i,
ṽk(t̃j)− u1∆t if j = i+ 1,
ṽk(t̃j) otherwise,

ỹ∗(t̃∗j ) =

{
ỹk(t̃i) + y1∆t if j = i,
ỹk(t̃j) otherwise.

We can easily check the feasibility of (ṽ∗, ỹ∗, t̃∗) to QP (|P̃ |). So

p∑
j=1

ṽ∗(t̃∗j )
′c

(
t̃∗i−1 + t̃∗i

2

)
−

p∑
j=1

ṽk(t̃j)
′c
(
t̃i−1 + t̃i

2

)

=

(
c(t̃i−1) + c(t̃∗i )

2

)′
ṽ∗(t̃∗i ) +

(
c(t̃∗i ) + c(t̃i+1)

2

)′
ṽ∗(t̃∗i+1)

−
(
c(t̃i−1) + c(t̃i)

2

)′
ṽk(t̃i)−

(
c(t̃i) + c(t̃i+1)

2

)′
ṽk(t̃i+1)

=

(
c(t̃∗i )− c(t̃i)

2

)′
ṽk(t̃i) +

(
c(t̃∗i )− c(t̃i)

2

)′
ṽk(t̃i+1)

−∆t

2
(∆ti + ∆ti+1)ċ(t̃i)

′u1

=
∆t∆ti

2
(ċ(t̃i)

′ũk(t̃i−)− ċ(t̃i)′u1)

+
∆t∆ti+1

2
(ċ(t̃i)

′ũk(t̃i+)− ċ(t̃i)′u1).(33)

Also,

p∑
j=1

t̃∗i − t̃∗i−1

2
(ỹ∗(t̃∗i ) + ỹ∗(t̃∗i−1))′g(t̃∗i−1+)
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−
p∑
j=1

t̃i − t̃i−1

2
(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)

=
t̃∗i − t̃∗i−1

2
(ỹ∗(t̃∗i ) + ỹ∗(t̃∗i−1))′g(t̃∗i−1+)

+
t̃∗i+1 − t̃∗i

2
(ỹ∗(t̃∗i+1) + ỹ∗(t̃∗i ))

′g(t̃∗i+)

− t̃i − t̃i−1

2
(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)

− t̃i+1 − t̃i
2

(ỹk(t̃i+1) + ỹk(t̃i))
′g(t̃i+)

=
∆ti + ∆t

2
(ỹk(t̃i) + ỹk(t̃i−1) + ∆ty1)′g(t̃i−1+)

+
∆ti+1 −∆t

2
(ỹk(t̃i+1) + ỹk(t̃i) + ∆ty1)′g(t̃i+)

−∆ti
2

(ỹk(t̃i) + ỹk(t̃i−1))′g(t̃i−1+)− ∆ti+1

2
(ỹk(t̃i+1) + ỹk(t̃i))

′g(t̃i+)

=
∆t

2
(ỹk(t̃i−1)− ỹk(t̃i+1) + (∆ti + ∆ti+1)y1)′g(tl+).(34)

Combining (33) and (34), we derive

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k))

=
∆t∆ti

2

(
ċ(t̃i)

′ũk(t̃i−)− g(t̃i+)′
ỹk(t̃i)− ỹk(t̃i−1)

∆ti
− (ċ(t̃i)

′u1 − y′1g(tl+))

)
+

∆t∆ti+1

2

(
ċ(t̃i)

′ũk(t̃i+)− g(t̃i+)′
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
− (ċ(t̃i)

′u1 − y′1g(tl+))

)
.

(35)

By the definition of a KKT point and the discussion following it in section 3.1, a
feasible solution to QP (|P |) is a KKT point if and only if there is no feasible descent
direction for this solution. Hence

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) ≥ 0.(36)

Thus (35) implies that ċ(t̃i)
′u1 − y′1g(tl+) is uniformly bounded from above for any

possible choice of (u1, y1).
For any j̄ ≤ q(i) and any ε ∈ (0 , 1), we have

ũk(t̃i+) = ελ
(i)
1 (s

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r
(i)

j̄
)

+ (1− ελ(i)
1 )

k(i)∑
j=2

λ
(i)
j

1− ελ(i)
1

s
(i)
j +

λ
(i)
1 (1− ε)
1− ελ(i)

1

s
(1)
1 +

q(i)∑
j=1,j 6=j̄

µ
(i)
j

1− ελ(i)
1

r
(i)
j


and

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
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= ελ
(i)
1 (s̄

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r̄
(i)

j̄
)

+ (1− ελ(i)
1 )

k(i)∑
j=2

λ
(i)
j

1− ελ(i)
1

s̄
(i)
j +

λ
(i)
1 (1− ε)
1− ελ(i)

1

s̄
(1)
1 +

q(i)∑
j=1,j 6=j̄

µ
(i)
j

1− ελ(i)
1

r̄
(i)
j

 .

By letting

u1 = s
(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r
(i)

j̄
, y1 = s̄

(i)
1 +

µ
(i)

j̄

ελ
(i)
1

r̄
(i)

j̄
,

and letting ε tend to zero, the above boundedness result on ċ(t̃i)
′u(i)

1 −y′1g(tl+) implies
(32). Since [ti−1, ti] is not the first positive-length interval that resides on [tl, tm],
we can similarly have

ċ(t̃i)
′r(i−1)
j − g(tl+)′r̄(i−1)

j ≤ 0 for all j.

These together with (30) and (31) give

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 ≥ ċ(t̃i)′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
.(37)

Similarly,

ċ(t̃i)
′s(i)

1 − g(tl+)′s̄(i)
1 ≥ ċ(t̃i)′ũk(t̃i+)− g(t̃i+)′

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
.(38)

Since P̃ is a purified partition, by Procedure PURIFY , the opposite of (11)
holds, which is equivalent to

ċ(t̃i)
′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
> ċ(t̃i)

′ũk(t̃i+)− g(t̃i+)′
ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
.

(39)
Now, suppose

ċ(t̃i)
′s(i−1)

1 − g(tl+)′s̄(i−1)
1 ≤ ċ(t̃i)′s(i)

1 − g(tl+)′s̄(i)
1 .

By (37) and (39), we have

ċ(t̃i)
′ũk(t̃i+)− g(t̃i+)′

ỹk(t̃i+1)− ỹk(t̃i)

∆ti+1
< ċ(t̃i)

′s(i)
1 − g(tl+)′s̄(i)

1

and

ċ(t̃i)
′ũk(t̃i−1+)− g(t̃i+)′

ỹk(t̃i)− ỹk(t̃i−1)

∆ti
≤ ċ(t̃i)′s(i)

1 − g(tl+)′s̄(i)
1 .

Let u1 = s
(i)
1 and y1 = s̄

(i)
1 . Then the above relationship together with (35) gives

V (QP (|P̃ k|), (ṽ∗, ỹ∗, t̃∗))− V (QP (|P̃ k|), (ṽk, ỹk, t̃k)) < 0,

which contradicts that (ṽk, ỹk, t̃k) is a KKT point for QP (|P̃ k|) (cf. (36)).
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Since ċ(t̃i) is a constant vector over [tl, tm], as a consequence of Lemma 7, every
nonzero-length interval that resides on [tl, tm] (except the first nonzero-length inter-
val) corresponds to a different generalized extreme point of some system (SY SJi).
Since only a finite number of different systems (SY SJi) exists, and for each (SY SJi)
there is a finite number of generalized extreme points, we see there is only a finite
number of nonzero-length intervals that reside on [tl, tm]. Since the number of zero-
length intervals that reside on [tl, tm] is at most two (one on each end of [tl, tm]),
there is also a finite number of breakpoints in [tl, tm]. Thus we have the following
corollary.

Corollary 4. There is a finite number of breakpoints in P̃ k.
There is only a finite number of different solution values for all the KKT points

of QP (|P |), as shown in the following lemma.
Lemma 8. The KKT points for QP (|P |) are the union of a finite number of con-

nected sets. Over each connected component of KKT points of QP (|P |), the objective
value is a constant. Furthermore, the number of connected sets is bounded from above
by a number that depends on |P | only.

Proof. It is easily seen that a solution to QP (|P |) is a KKT point of QP (|P |)
if and only if it is a solution to a feasible symmetric affine variational inequality
problem whose dimension depends only on |P | (cf. section 3.1). The lemma now
follows directly from Lemma 3.1 of Luo and Tseng [31].

We now present the main convergence result of the paper.
Theorem 5. Algorithm A will terminate after a finite number of iterations.
Proof. Suppose Algorithm A does not terminate after a finite number of iter-

ations. It is guaranteed by Theorem 3 that Step 4 of Algorithm A would produce
a strictly improved solution, and thus every iteration of Algorithm A would give a
KKT point of a certain QP (|P |) that has a strictly better solution value. By Lemma
8, the KKT points generated by QP (|P |) should lie on a different connected KKT
points component of QP (|P |) for every |P |. This means that the cardinality of P is
unbounded and contradicts Corollary 4.

8. New structural and duality results. As a result of Algorithm A and
Theorem 5, we have the following new structural result for (SCSCLP ).

Theorem 6. Under Assumption 1, Algorithm A terminates with a solution to
QP (|P |) for some P that gives the optimal objective value of (SCSCLP ) and can be
closely approximated by a series of piecewise constant controls for (SCSCLP ). When
the solution set for (SCSCLP ) is bounded and E is an identity matrix, Algorithm
A terminates with a piecewise constant optimal control with partition P such that

ti 6= ti−1 for all i. Furthermore, over each interval [ti−1, ti), (u(ti+), y(ti+1)−y(ti)
ti+1−ti )

is a convex combination of the generalized extreme points of linear system (SY SJi),
where Ji is a subset of {1, . . . , n2}.

Proof. The first part of the theorem is a direct consequence of Theorem 5. The
second part of the theorem follows from Lemma 5 and the remark following the proof
of Lemma 1.

We remark that when the solution set for (SCSCLP ) is unbounded, it is possible
that the optimal solution value is not attained. We next derive the following new
duality result for (SCSCLP ).

Theorem 7. Under Assumption 1, there is no duality gap between (SCSCLP )
and (SCSCLP ∗). There always exists an optimal solution for (SCSCLP ∗) that is
piecewise linear. Furthermore, there exists a bounded measurable optimal solution for
(SCSCLP ) if and only if Algorithm A terminates with such a solution.
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Proof. The first part of the theorem is a direct consequence of Theorem 5.
Denote P̃ k as the final purified partition when Algorithm A terminates. To prove

the second part of the theorem, we first show that the zero-length intervals in P̃ k can
be eliminated in the dual problem AP ∗(P ). Let [ti−1, ti] be a zero-length interval

that resides on [tl, tm], where tl and tm are two consecutive breakpoints in DP̃k

1 . By

Lemma 4, the zero-length intervals can be located only at the breakpoints in DP̃k

1 .
We assume ti = tm (the case ti−1 = tl can be treated similarly).

Let (π̂, η̂, ξ̂) be an optimal solution for AP ∗(P̃ k). Then we can construct a new

solution (π̃, η̃, ξ̃) for AP ∗(P̃ k) in the following way. Let (π̃, η̃, ξ̃) equal (π̂, η̂, ξ̂)
except

π̃(ti−1+) = π̂(ti−1−), π̃(ti−) = π̂(ti−1−),

η̃(ti−1+) = η̂(ti−1−), η̃(ti−) = η̂(ti−1−),

ξ̃

(
ti−1 + ti

2

)
= 0, ξ̃(ti−1) = 0,

ξ̃(ti) = ξ̂

(
ti−1 + ti

2

)
+ ξ̂(ti−1) + ξ̂(ti).

It is easy to check the feasibility of (π̃, η̃, ξ̃). It is a fact that (π̃, η̃, ξ̃) and (π̂, η̂, ξ̂)
have the same solution value in AP ∗(P̃ k). Let P̄ be P̃ k \ {ti−1}. By eliminating

the elements π̃(ti−1−), π̃(ti−1+), η̃(ti−1−), η̃(ti−1+), ξ̃(ti−1), and ξ̃
(
ti−1+ti

2

)
from

(π̃, η̃, ξ̃), we can get a feasible solution (π̄, η̄, ξ̄) for AP (P̄ ). Also, (π̄, η̄, ξ̄) has the
same solution value as (π̃, η̃, ξ̃).

By repeating this process, we can eliminate all the zero-length intervals in P̃ k and
define a feasible solution for AP ∗(P ) from the resulting partition P . From this feasible
solution, we can construct an optimal solution for (SCSCLP ∗) that is piecewise linear.
This proves the second part of the theorem.

One direction of the third part of the theorem is quite obvious. The other di-
rection (i.e., if there exists a bounded measurable optimal solution for (SCSCLP ),
then Algorithm A will find such a solution) can be shown as follows. Let the bounded
measurable solution (u(t), y(t)) be optimal for (SCSCLP ). By the second part of the
theorem, there always exists an optimal solution (π(t), η(t), ξ(t)) for (SCSCLP ∗)
that is piecewise linear with partition P (defined by removing all the zero-length inter-
vals from P̃K). By Corollary 1, the complementary slackness condition (5) is satisfied.
Let ū(t) be the piecewise constant extensions of u(t0+), u(t1+), . . . , u(tp−1+). Let
ȳ(t) be the piecewise-linear extension of y(t0+), y(t1−) y(t1+), . . . , y(tp−1+), y(tp−).
The solution (ū(t), ȳ(t)) is a feasible solution for (SCSCLP ) which together with
(π(t), η(t), ξ(t)) satisfies (5). Therefore, Corollary 1 again, (ū(t), ȳ(t)) is optimal for
(SCSCLP ).

9. Computational results. Algorithm A has been implemented and tested on
a Sparc 10/41. The program is written in C. We used the academic version of LOQO
Version 1.08 by Vanderbei [48]. We call its subroutines to solve intermediate linear
programming and quadratic programming subproblems.

The implementation of Algorithm A consists of four modules: the input data
processing module, the output module, the successive quadratic programming module,
and the lower bound module. The successive quadratic programming module uses
the Frank–Wolfe method to iteratively solve a sequence of quadratic programs, as
outlined in Algorithm A. The lower bound module uses the partition generated by
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Fig. 4. The reentrant line for the example.

the successive quadratic programming module to calculate a dual feasible solution for
the problem.

We next give a numerical example that arises in manufacturing systems. The
example is a reentrant line, as in Kumar [25]. A reentrant line is a multiclass queuing
network with fixed routing.

The reentrant line we consider is shown in Figure 4. We have from left to right
n stations (in Figure 4, we have 20 stations), and each station services 5 different
classes of customers. There are 5n classes of customers in total. Class i customers
will be served at machine b(i − 1)/n + 1c. After class i customer finishes service, it
will become class i + 1 customer if i < 5n and exit the system otherwise. For this
system, we assume the exogenous arrival rate for class 1 customer is 1 and is zero
for all other classes. We generate randomly the mean service time, the cost per unit
time, and the initial number of customers for each class of customers. Our objective
is to find an optimal control policy (involving both routing and sequencing decisions)
that minimizes the cumulated cost of queuing over a fixed time horizon [0, T ].

We can formulate the problem as an (SCSCLP ). Let yi(t) be the queue length of
class i customers at time t. If class i customers are served at machine j, we let ui(t) be
the proportion of machine capacity of machine j that is devoted to class i customers
at time t. The G matrix of the (SCSCLP ) is the node-arc incidence matrix for the
following line digraph: Node i of the graph corresponds to class i and the edges are
(i, i + 1) for i = 1, . . . , 5n − 1. The matrix H is a block diagonal matrix, with each
block a row vector of mean service times of the customers served at the same machine.
F is a negative identity matrix. c(t) is a zero vector. g(t) is a randomly generated
vector. a(t) = y(0) + e1t with e1 the unit vector whose first component is one and all
the other components are zero. b(t) is a vector of all ones and h(t) is a zero vector.

The computational sequences are shown in Table 9.1.

When we fix the precision requirement and vary the number of stations in the
example, we find that the computational time grows almost quadratically with the
problem dimension, as shown in Figure 5. This is due to the fact that the number of
control pieces grows almost linearly with the problem dimension and the total number
of nonzero elements in the intermediate problems grows almost quadratically with the
number of stations. Notice that for the largest example in Figure 5 (25 stations) there
are 250 continuous variables.
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Table 9.1
Test results for the example.

# Iter. Obj. Value # Pieces Dual obj. Time in sec.

0 20987.1355 7

1 5986.7656 7 5956.7923 134.05

2 5965.1006 15 5962.7291 1738.2

3 5963.6674 29 5963.2700 2436.61
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Fig. 5. Computation time versus the number of stations (with precision fixed at 0.0001).

This problem demonstrates that our algorithm can solve rather large problems.
It is our experience that (SCSCLP ) is easier to approximate than to solve exactly.
The computational time grows almost exponentially with the accuracy requirement.
A key feature of Algorithm A is that it keeps the number of breakpoints as small
as possible, which in turn makes the size of intermediate quadratic programming
subproblems small. It is this feature that makes the algorithm efficient. We believe
that Algorithm A can be made even more efficient if the special structure of the
intermediate quadratic programs is exploited.
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